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PRESSURE DISTRIBUTIONS ON A CYLINDRICAL SURFACE BEHIND
SHALLOW THREE-DIMENSIONAL REARWARD-FACING STEPS
AT MACH NUMBERS FROM 0.4 TO 1.3

By Francis J. Capone
Langley Research Center

SUMMARY

An investigation has been conducted in the Langley 16-foot transonic tunnel to deter-
mine static pressure distributions along a cylindrical surface behind a shallow three-
dimensional rearward-facing step of varying height. The ratio of step height to model
maximum diameter ahead of the step varied from 0 to 0.27. The investigation was con-
ducted at Mach numbers from 0.4 to 1.3 and at angles of attack from -5° to 12°. The
Reynolds number per meter varied from 4.90 X 106 to 14.10 x 106, A

INTRODUCTION

A previous investigation at subsonic and transonic speeds (ref. 1) was concerned
with measuring base pressure of shallow rearward facing steps and the pressure distri-
butions ahead of these steps. Reference 2 presents supersonic results of step base pres-
sure and pressure distributions downstream of the step. The present investigation
extended the range of measurements to the region downstream of such steps at subsonic
and transonic speeds. Since steps of this type generally occur in the manufacture of mis-
sile and aircraft configurations, this information would be helpful in determining the use
of such steps for venting of an internal compartment (ref. 1). The present investigation
was conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.4 to 1.3
and an angle-of-attack range from -5° to 12°. The Reynolds number per meter varied
from 4.90 x 108 t0 14.10 x 106, The results are presented without discussion,

SYMBOLS
p -
Cp pressure coefficient, - P
o
-p
Cob step base pressure coefficient %o~ P
P, ’ a,

d diameter of cylindrical portion of model behind step



dm maximum diameter of model

M free-stream Mach number

Py step base pressure

p; local static pressure

1 free-stream static pressure

Ao free-stream dynamic pressure

X longitudinal distance measured positive rearward from model step base

(station 182.58 cm), see fig. 1
a nominal angle of attack, deg

[0} meridian angle, measured from top of model in clockwise direction when
viewed looking upstream, deg

APPARATUS AND PROCEDURE

Model

Details and design dimensions of the model configuration used in the present inves-
tigation are shown in figure 1. Photographs showing the model mounted in the wind-tunnel
test section are presented in figure 2. The forebody of the model was a 182.58-cm-long
aluminum cone-cylinder with a maximum diameter of 15.24 centimeters. The cone half-
angle was 14°. Five cylindrical wooden sleeves of varying diameter could be attached
directly to the sting behind the aluminum forebody. The ratio of step height to model
maximum diameter ahead of the step varied from 0 to 0.27. The aluminum forebody was
instrumented along the top at ¢ =0° with a single row of pressure orifices and each of
the sleeves was instrumented with pressure orifices at ¢ = 0° and 180°. Two orifices
were located on the model step base at meridian angles of ¢ = 0° and 180°. Base pres-
sure at the step could be measured only for the configurations with the three smallest
sleeves and only at ¢ = 180° for d/dm = 0.92.

Wind Tunnel and Instrumentation

This investigation was conducted in the Langley 16-foot transonic tunnel, which is a
single-return, atmospheric wind tunnel with a slotted octagonal test section and continuous
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air exchange. The model-support angle-of-attack mechanism pivots the sting support in
such a manner that the model remains on or near the tunnel center line.

Surface static pressures forward of the step were measured on pressure-scanning
devices. Base pressures at the step and static pressure on the sleeves downstream of
the step were measured with individual pressure transducers.

Tests

The model was tested at Mach numbers from 0.4 to 1.3 and at nominal angles of
attack from -5° to 12°. The Reynolds number per meter varied from 4.90 X 108 to
14.1 X 106, To insure turbulent flow, the model was tested with a boundary-layer tran-
sition strip which consisted of No, 100 silicon carbide grit particles sparsely distributed
in a thin film of lacquer. The strip was 0.25 centimeter wide and located 2.54 centi-
‘meters from the model nose.

CORRECTIONS AND ACCURACIES

The angle of attack has been corrected for wind-tunnel flow angularity but not for
model deflection under load at angle of attack. Hence model angle of attack should be
considered nominal. No estimate of model deflection has been made. From calibrations
of the wind tunnel, the test-section wall divergence was adjusted as a function of airstream
dewpoint temperature in order to eliminate any longitudinal static pressure gradients in
the test section that might occur because of condensation of atmospheric moisture.

The accuracies of the data have been estimated to be

D v e e e e 0,007
Cp’b .......................................... +0.007
L +0.005

PRESENTATION OF RESULTS

The results of the investigation are presented in pressure-coefficient form in fig-
ures 3 and 4. Figure 3 shows typical pressure distributions at ¢ = 0° on the cylindri-
cal forebody. Figure 4 presents both the step base pressure coefficients and the pressure
coefficients along the cylindrical surface behind the step. The pressure distributions at
or near x/dy, =0 for d/dm =1.00 are influenced by the joint that existed between the
aluminum model and the wooden sleeve. The effect of step height on the variation of step
base pressure coefficient with Mach number at « = 0° for three configurations is pre-
sented in figure 5. Only the step-base-pressure-coefficient data recorded at o= 0°
are included.



The data at M = 1.00 and 1.05 are subject to wall interference effects as dis-
cussed in reference 3. The data at M= 1,10 and 1.15 are subject to boundary-
reflected-disturbance interference effects (model bow shock reflection). At M =1.10
the reflected shock impinges on the model at approximately x/dpy = -2.0 (fig. 3(d)),
andat M =1.15 the reflected shock impinges at approximately x/dy, = 2.2 (fig. 4(2)).

CONCLUDING OBSERVATIONS

The general pattern of the pressure distributions on a cylindrical surface down-
stream of a three-dimensional step was an expansion of the flow immediately behind the
step followed by a recompression to above free-stream static pressure and approximate
recovery to free-stream conditions. The length of the expansion region increased with
step size. The recompression which was very abrupt at the lower speeds became more
gradual as the Mach number was increased. Increasing the angle of attack reduced the
extent of the expansion region on top of the cylindrical surface and increased it on the
bottom. In addition, the positive and negative pressure peaks behind the step increased
as model attitude increased.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., September 1, 1971,
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L-70- 102
(a) Front view.

L-70-2420
(b) Rear view.

Figure 2.- Photographs of model.
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(a) M= 0.40 and 0.80.

Figure 3.- Typical pressure distributions at ¢ = 0° on cylindrical surface
ahead of three-dimensional step.
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Figure 3.- Continued.
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Figure 3.- Continued.
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